Survival of Mycobacteria in Macrophages Is Mediated by Coronin 1-Dependent Activation of Calcineurin
نویسندگان
چکیده
Pathogenic mycobacteria survive within macrophages by avoiding lysosomal delivery, instead residing in mycobacterial phagosomes. Upon infection, the leukocyte-specific protein coronin 1 is actively recruited to mycobacterial phagosomes, where it blocks lysosomal delivery by an unknown mechanism. Analysis of macrophages from coronin 1-deficient mice showed that coronin 1 is dispensable for F-actin-dependent processes such as phagocytosis, motility, and membrane ruffling. However, upon mycobacterial infection, coronin 1 was required for activation of the Ca(2+)-dependent phosphatase calcineurin, thereby blocking lysosomal delivery of mycobacteria. In the absence of coronin 1, calcineurin activity did not occur, resulting in lysosomal delivery and killing of mycobacteria. Furthermore, blocking calcineurin activation with cyclosporin A or FK506 led to lysosomal delivery and intracellular mycobacterial killing. These results demonstrate a role for coronin 1 in activating Ca(2+) dependent signaling processes in macrophages and reveal a function for calcineurin in the regulation of phagosome-lysosome fusion upon mycobacterial infection.
منابع مشابه
Mechanism of Inducible Nitric Oxide Synthase Exclusion from Mycobacterial Phagosomes
Mycobacterium tuberculosis is sensitive to nitric oxide generated by inducible nitric oxide synthase (iNOS). Consequently, to ensure its survival in macrophages, M. tuberculosis inhibits iNOS recruitment to its phagosome by an unknown mechanism. Here we report the mechanism underlying this process, whereby mycobacteria affect the scaffolding protein EBP50, which normally binds to iNOS and links...
متن کاملRNA interference in J774 macrophages reveals a role for coronin 1 in mycobacterial trafficking but not in actin-dependent processes.
Macrophages are crucial for innate immunity, apoptosis, and tissue remodeling, processes that rely on the capacity of macrophages to internalize and process cargo through phagocytosis. Coronin 1, a member of the WD repeat protein family of coronins specifically expressed in leukocytes, was originally identified as a molecule that is recruited to mycobacterial phagosomes and prevents the deliver...
متن کاملTB or not TB: Calcium Regulation in Mycobacterial Survival
Mycobacterium tuberculosis (Mtb)-the bacterium that causes tuberculosis-resides in phagosomes inside macrophages. This bacterium evades destruction by preventing phagosome maturation, which involves the fusion of phagosomes with lysosomes. In this issue of Cell, Jayachandran et al. (2007) suggest that mycobacteria co-opt the actin-binding protein coronin 1 to activate the phosphatase calcineuri...
متن کاملEndoplasmic Reticulum Stress Pathway-Mediated Apoptosis in Macrophages Contributes to the Survival of Mycobacterium tuberculosis
BACKGROUND Apoptosis is thought to play a role in host defenses against intracellular pathogens, including Mycobacterium tuberculosis (Mtb), by preventing the release of intracellular components and the spread of mycobacterial infection. This study aims to investigate the role of endoplasmic reticulum (ER) stress mediated apoptosis in mycobacteria infected macrophages. METHODOLOGY/PRINCIPAL F...
متن کاملInterferon Gamma Activated Macrophages Kill Mycobacteria by Nitric Oxide Induced Apoptosis
Mycobacterium tuberculosis is an intracellular pathogen of macrophages and escapes the macrophages' bactericidal effectors by interfering with phagosome-lysosome fusion. IFN-γ activation renders the macrophages capable of killing intracellular mycobacteria by overcoming the phagosome maturation block, nutrient deprivation and exposure to microbicidal effectors including nitric oxide (NO). While...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 130 شماره
صفحات -
تاریخ انتشار 2007